Wire-Free Virtual Breast Localization Using Liquid Carbon Nanoparticles
DOI:
https://doi.org/10.21141/PJP.2019.08Keywords:
liquid carbon nanoparticles, non-wire breast localization, carbon nanoparticles suspension injection (CNSI), molecular breast imaging (MBI)Abstract
The emergence of improved multi-modal diagnostics including functional imaging has enabled the diagnosis of more nonpalpable breast lesions. Lesions diagnosed as early unifocal breast cancers are amenable to breast-conserving surgery (BCS). The precise localization of these lesions is a caveat to its complete removal along with sufficient surgical margins and the preservation of normal breast tissues.
Carbon marking is an alternative to needle wire localization that is easy to perform and simplifies the workflow of the multidisciplinary team involved in breast cancer care.
Downloads
Download data is not yet available.
References
1) http://science.marshall.edu/castella/chm448/elements2.pdf [Internet]. Accessed April 29, 2019.
2) Sperry K. Tattoos and tattooing. Part I: history and methodology. Am J Forensic Med Pathol. 1991;12(4);313-9.https://pubmed.ncbi.nlm.nih.gov/1807141.
3) Wood-Black F. Going skin deep: the culture and chemistry of tattoos. Inchemistry. https://inchemistry.acs.org/content/inchemistry/en/atomic-news/tattoo-ink.html. Accessed March 18, 2019.
4) Svane G. A stereotaxic technique for preoperative marking of non-palpable breast lesions. Acta Radiol Diagn (Stockh). 1983;24(2):145-51. https://pubmed.ncbi.nlm.nih.gov/6353873.
5) Patrikeos A, Wylie EJ, Bourke A, Frost F. Imaging of carbon granulomas of the breast following carbon track localization. Clin Radiol. 1998;53(11):845-8. https://pubmed.ncbi.nlm.nih.gov/9833790.
6) Cavalcanti TC, Malafaia, O, Nassif, PA, et al. Non-palpable breast lesions marked with coal suspension: evaluation of anatomopathological aspects, viability of interpretation and inflammatory response. Rev Col Bras Cir. 2012:39(6):469-75. https://pubmed.ncbi.nlm.nih.gov/23348642.
7) Xie P, Yang S-T, He T, Yang S, Tang XH. Bioaccumulation and toxicity of carbon nanoparticles suspension in intravenously exposed mice. Int J Mol Sci. 2017;18(12):pii:E2562. https://pubmed.ncbi.nlm.nih.gov/29186019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751165. https://doi.org/10.3390/ijms18122562.
8) Jiang Y, Lin N, Huang S, et al. Tracking nonpalpable breast cancer for breast-conserving surgery with carbon nanoparticles implication in tumor location and lymph node dissection. Medicine (Baltimore). 2015:94(10):e605. https://pubmed.ncbi.nlm.nih.gov/25761181. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4602461. https://doi.org/10.1097/MD.0000000000000605.
9) Ko K, Han BK, Jang KM, et al. The value of ultrasound-guided tattooing localization of nonpalpable breast lesions. Korean J Radiol 2007;8(4):295-301. https://pubmed.ncbi.nlm.nih.gov/17673840. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2627157. https://doi.org/10.3348/kjr.2007.8.4.295.
10) Rose A, Collins JP, Neerhut P, Bishop CV, Mann GB. Carbon localisation of impalpable breast lesions. Breast. 2003;12(4):264-9. https://pubmed.ncbi.nlm.nih.gov/14659311.
2) Sperry K. Tattoos and tattooing. Part I: history and methodology. Am J Forensic Med Pathol. 1991;12(4);313-9.https://pubmed.ncbi.nlm.nih.gov/1807141.
3) Wood-Black F. Going skin deep: the culture and chemistry of tattoos. Inchemistry. https://inchemistry.acs.org/content/inchemistry/en/atomic-news/tattoo-ink.html. Accessed March 18, 2019.
4) Svane G. A stereotaxic technique for preoperative marking of non-palpable breast lesions. Acta Radiol Diagn (Stockh). 1983;24(2):145-51. https://pubmed.ncbi.nlm.nih.gov/6353873.
5) Patrikeos A, Wylie EJ, Bourke A, Frost F. Imaging of carbon granulomas of the breast following carbon track localization. Clin Radiol. 1998;53(11):845-8. https://pubmed.ncbi.nlm.nih.gov/9833790.
6) Cavalcanti TC, Malafaia, O, Nassif, PA, et al. Non-palpable breast lesions marked with coal suspension: evaluation of anatomopathological aspects, viability of interpretation and inflammatory response. Rev Col Bras Cir. 2012:39(6):469-75. https://pubmed.ncbi.nlm.nih.gov/23348642.
7) Xie P, Yang S-T, He T, Yang S, Tang XH. Bioaccumulation and toxicity of carbon nanoparticles suspension in intravenously exposed mice. Int J Mol Sci. 2017;18(12):pii:E2562. https://pubmed.ncbi.nlm.nih.gov/29186019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751165. https://doi.org/10.3390/ijms18122562.
8) Jiang Y, Lin N, Huang S, et al. Tracking nonpalpable breast cancer for breast-conserving surgery with carbon nanoparticles implication in tumor location and lymph node dissection. Medicine (Baltimore). 2015:94(10):e605. https://pubmed.ncbi.nlm.nih.gov/25761181. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4602461. https://doi.org/10.1097/MD.0000000000000605.
9) Ko K, Han BK, Jang KM, et al. The value of ultrasound-guided tattooing localization of nonpalpable breast lesions. Korean J Radiol 2007;8(4):295-301. https://pubmed.ncbi.nlm.nih.gov/17673840. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2627157. https://doi.org/10.3348/kjr.2007.8.4.295.
10) Rose A, Collins JP, Neerhut P, Bishop CV, Mann GB. Carbon localisation of impalpable breast lesions. Breast. 2003;12(4):264-9. https://pubmed.ncbi.nlm.nih.gov/14659311.
Downloads
Published
05/13/2019
How to Cite
Buenaflor, M. T., Quimbo, R. V., & San Agustin, N. V. (2019). Wire-Free Virtual Breast Localization Using Liquid Carbon Nanoparticles. PJP, 4(1), 43–46. https://doi.org/10.21141/PJP.2019.08
Issue
Section
Diagnostic Perspectives
License
The Philippine Journal of Pathology is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Based on works made open access at http://philippinejournalofpathology.org