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ABSTRACT

Operations research (OR) is a valuable yet underutilized field in clinical laboratory management, offering 
practical solutions to optimize workflows, resource allocation, and decision-making. Despite its potential, the 
adoption of OR methodologies remain limited due to a lack of training and familiarity among pathologists 
and laboratory professionals. This paper addresses this gap by presenting an accessible introduction and 
practical guide to analyzing operations research problems in clinical laboratories using computer-assisted 
simulations in R, implemented within the R Studio environment.

The proposed framework emphasizes simplicity and flexibility, leveraging the extensive capabilities of 
base R to model and analyze critical OR questions. The paper outlines step-by-step methods for defining 
problems, constructing simulation models, and interpreting results, ensuring that readers can replicate and 
adapt these techniques to their unique laboratory contexts.

Key features of the framework include its emphasis on reproducibility, customization, and the integration 
of data-driven insights into decision-making processes. Case studies and examples drawn from real-world 
laboratory scenarios illustrate the application of R simulations to address challenges such as minimizing 
turnaround times, balancing staffing levels, and managing inventory efficiently.

This guide aims to empower laboratory professionals and pathologists with the tools and skills to integrate 
operations research into their practice, fostering a culture of innovation and efficiency in clinical settings. 
By bridging the gap between OR theory and practical application, this paper contributes to the broader 
adoption of computational approaches in laboratory management, ultimately enhancing the quality and 
sustainability of healthcare services.

Key words: operations research, clinical laboratory management, simulation modeling, R programming, 
healthcare resource management

INTRODUCTION 

Operations research (OR) is critical in clinical laboratory 
management as it provides a structured, data-driven 
approach to optimizing operations, improving efficiency, 
and ensuring quality service delivery. In modern 
laboratories, challenges such as high testing volumes, 
limited resources, and stringent turnaround time (TAT) 
requirements necessitate robust analytical tools. OR 
methods such as queuing theory, simulation modeling, 
and optimization algorithms enable laboratories to identify 
bottlenecks, optimize resource allocation, and enhance 
workflow efficiency.1-3 For example, discrete-event 
simulation has been used to reduce sample processing 
delays, improving patient outcomes while minimizing 
costs.4 These techniques help laboratories adapt to demand 
fluctuations, especially during pandemics or seasonal 
surges, ensuring they remain agile and resilient.

Beyond operational efficiency, OR supports strategic 
decision-making by forecasting future testing demands, 

ISSN 2507-8364 (Online)
Printed in the Philippines.
Copyright© 2024 by the PJP.
Received: 26 November 2024.
Accepted: 9 December 2024.
Published online first: 17 December 2024.
https://doi.org/10.21141/PJP.2024.14
  
Corresponding author: Mark Angelo C. Ang, MD
E-mail: mcang1@up.edu.ph
ORCiD: https://orcid.org/0000-0003-1292-9493

https://philippinejournalofpathology.org | Vol. 9 No. 2 December 2024

OPEN ACCESS – FEATURE ARTICLE



determining cost-effective inventory policies, and planning 
laboratory expansions. This is crucial in an era of precision 
medicine, where diagnostic labs play a pivotal role in health-
care. For instance, predictive analytics informed by OR can 
help prevent reagent stockouts, avoiding costly delays in 
diagnostic processes.5-7 Furthermore, OR enhances the 
ability to meet accreditation and regulatory requirements 
by ensuring processes are both efficient and compliant. 

Operations research bridges the gap between operational 
efficiency and strategic foresight, making it indispensable 
for managing clinical laboratories in today’s complex 
healthcare ecosystem.

Operations research and analysis is an approach to 
answer questions that arise in the context of clinical 
laboratory management and focus on efficiency and 
optimization problems.
Operations research in clinical laboratories is the application 
of analytical methods to optimize the use of resources, such 
as staff, equipment, and reagents, to improve efficiency 
and reduce costs without compromising the quality of 
diagnostic services.8 OR involves the use of mathematical 
modeling, simulation, and statistical analysis to support 
decision-making processes in laboratory management, 
such as workload balancing, test prioritization, and 
process redesign.2,9,10 In the context of clinical laboratories, 
operations research focuses on improving workflow 
efficiency, reducing turnaround times, and ensuring timely 
delivery of test results to meet patient care demands.11 
OR applies quantitative techniques to manage laboratory 
quality, predict future testing demands, and design scalable 
operations to accommodate growth while maintaining high 
standards of service.

Important questions arise in the conduct of operations 
management of the clinical laboratory.

Workflow optimization
Workflow optimization issues in clinical laboratories arise 
in various settings, including high-volume testing centers, 
specialized labs, STAT and emergency testing areas, and 
facilities responding to public health crises. Challenges 
often include bottlenecks in sample processing, resource 
allocation inefficiencies, and disruptions from urgent test 
prioritization or sudden demand surges. Small laboratories 
with limited resources and those transitioning to new 
technologies also face delays due to constrained capacity 
or misaligned workflows.12,13 Addressing these challenges 
requires tailored strategies, such as leveraging automation, 
improving resource planning, and implementing dynamic 
queuing systems. Examples of questions that may arise are:
•	 How can we reduce the turnaround time (TAT) for routine 

and urgent test results? 
•	 What is the optimal sequence for processing different types of 

specimens (e.g., blood, urine, tissue)? 
•	 Where are the bottlenecks in the laboratory workflow, and how 

can they be alleviated?
•	 How can we ensure that critical tests (e.g., STAT tests) are 

prioritized without disrupting routine workflows?

Resource allocation
Resource allocation issues in clinical laboratories commonly 
arise in settings with high variability in demand, such as 

during peak testing hours in high-volume labs or public 
health emergencies. Limited staffing, budget constraints, 
and equipment availability exacerbate these challenges, 
particularly in rural or small-scale laboratories with fewer 
resources.14 STAT and emergency testing areas frequently 
face resource allocation conflicts, as prioritizing urgent 
tests can disrupt routine workflows and strain personnel 
and equipment.15,16 Additionally, laboratories transitioning 
to automation or expanding services often encounter 
temporary inefficiencies as resources are diverted to 
implement new systems or train staff.8 These settings 
highlight the need for optimized resource allocation 
strategies to balance demand, costs, and service quality. 
Examples of questions that may arise include:
•	 What is the optimal number of staff required for peak and 

off-peak hours?
•	 How should staff be scheduled to minimize overtime and 

maximize efficiency?
•	 How can we maximize the utilization of high-cost equipment 

(e.g., hematology analyzers, mass spectrometers)?
•	 What is the optimal maintenance schedule to minimize 

downtime?

Inventory and supply chain management
Issues in inventory and supply chain management 
commonly arise in clinical laboratories with fluctuating 
demand, such as during seasonal surges or public health 
emergencies like pandemics. Laboratories often face 
challenges in forecasting reagent and consumable usage, 
leading to overstocking, stockouts, or waste, particularly in 
high-volume testing facilities.17 Small or rural laboratories, 
operating with limited budgets, may encounter difficulties 
in maintaining optimal inventory levels due to constrained 
purchasing power and delayed supplier deliveries.18 
Additionally, disruptions in global supply chains, such as 
those experienced during COVID-19, can exacerbate 
shortages, affecting both routine and emergency testing 
capabilities.19 These settings emphasize the importance 
of implementing robust inventory management systems 
and dynamic supply chain strategies to ensure reliable 
and cost-effective operations. Example of questions that 
may arise include:
•	 What are the ideal inventory levels for reagents to prevent 

stockouts while minimizing holding costs?
•	 How can we forecast demand for reagents based on historical 

testing patterns?
•	 What is the most cost-effective way to manage procurement 

and logistics for laboratory supplies? 

Quality and accuracy
Issues in quality and accuracy in clinical laboratories 
often arise in settings with high workloads, complex 
testing protocols, or inadequate quality control measures. 
Laboratories handling large volumes of routine or 
specialized tests may encounter errors during pre-
analytical, analytical, or post-analytical phases due 
to rushed procedures or insufficient staff training.20 
Resource-limited laboratories, such as those in rural or 
underfunded healthcare systems, often face challenges in 
maintaining consistent quality due to outdated equipment, 
lack of standard operating procedures, or insufficient 
quality control practices.21 Additionally, emergency testing 
environments or laboratories responding to pandemics 
may experience a higher risk of errors due to the pressure 
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to deliver rapid results without compromising accuracy.22 
These settings highlight the critical need for robust quality 
management systems and ongoing staff education to 
ensure diagnostic reliability. Examples of questions that 
may arise are:
•	 How can we minimize pre-analytical, analytical, and post-

analytical errors?
•	 What is the impact of process changes on the rate of quality 

control failures?
•	 What is the optimal frequency for running quality control 

samples to balance cost and error detection?

Capacity planning
Issues in capacity planning in clinical laboratories arise 
in settings experiencing unpredictable demand, such 
as during seasonal epidemics or public health crises like 
pandemics. Laboratories often struggle to scale resources, 
equipment, and staffing to meet sudden surges, resulting 
in delayed turnaround times and service disruptions.23,24 
Additionally, specialized laboratories offering high-
complexity tests often grapple with capacity constraints due 
to the limited availability of skilled personnel and high-cost 
equipment.25 These challenges underscore the importance 
of data-driven forecasting and dynamic resource allocation 
to optimize laboratory capacity and responsiveness. 
Example of specific questions that may arise include:
•	 How should the laboratory plan for fluctuations in test 

volumes (e.g., seasonal trends, pandemics)?
•	 What infrastructure investments are needed to handle 

projected growth in testing demand?
•	 How can laboratory layout be optimized to improve workflow 

and accommodate growth?

Cost management
Issues in cost management in clinical laboratories arise in 
settings where balancing quality and efficiency is critical, 
particularly in resource-limited environments such as 
rural or small-scale labs. High operational costs, driven 
by reagents, equipment maintenance, and staff salaries, 
often strain budgets, especially when reimbursement rates 
do not align with testing costs.26 Large laboratories with 
high test volumes may face inefficiencies due to overuse or 
waste of consumables, while smaller labs may struggle with 
the economies of scale needed to reduce per-test costs.26 
Public health laboratories or those responding to crises 
often experience cost escalations due to sudden surges 
in testing demand, necessitating emergency procurement 
and overtime staffing.27 These challenges highlight the 
importance of implementing cost-tracking systems, 
optimizing resource utilization, and aligning financial 
strategies with operational goals to ensure sustainability.
•	 What is the cost per test for different assays, and how can it be 

reduced without compromising quality?
•	 How should pricing models be adjusted to remain competitive 

while ensuring profitability?
•	 How can the laboratory allocate its budget to maximize 

operational efficiency and quality?

Patient care perspective type of questions
Issues in patient care arise in clinical laboratories when 
delays, errors, or inefficiencies compromise the timely 
delivery of accurate test results, which are critical for 
clinical decision-making. High-volume laboratories may 
face bottlenecks or prolonged turnaround times (TAT), 

particularly during peak testing periods or public health 
emergencies, leading to delays in treatment initiation.11,28 
Resource-limited or rural laboratories often struggle to 
maintain consistent quality due to outdated equipment 
or insufficient staff, increasing the likelihood of diagnostic 
errors.29 Laboratories managing STAT and emergency 
testing may also encounter challenges in prioritizing critical 
samples without disrupting routine workflows, potentially 
impacting patient outcomes.30 These issues highlight the 
importance of efficient workflows, robust quality control, 
and reliable communication with healthcare providers 
to ensure optimal patient care.
•	 What is the optimal TAT for different test categories to meet 

clinical needs?
•	 How can patient satisfaction be improved through better 

communication of test results?

Popular methods exist that answer operations 
research questions in the context of clinical laboratory 
management
To address operations research (OR) challenges in clinical 
laboratories, a variety of methods and techniques are 
employed, each tailored to specific problems. Mathematical 
optimization techniques, such as Linear Programming (LP), 
Integer Programming (IP), and Mixed-Integer Linear 
Programming (MILP), are foundational tools for resource 
allocation and scheduling.31,32

LP effectively allocates resources, including reagents 
and staff, to minimize costs, while IP focuses on discrete 
decisions, such as determining the optimal number of 
instruments or staff shifts. MILP bridges continuous and 
discrete variables, making it suitable for complex tasks like 
laboratory expansions or integrating new technologies.31,32 
Despite their precision and scalability, these methods 
often demand detailed data and advanced expertise, 
presenting challenges for smaller or resource-constrained 
laboratories.33

Simulation modeling and queuing theory are particularly 
effective for addressing the dynamic and stochastic nature 
of laboratory workflows. Discrete Event Simulation (DES) 
models workflows to identify bottlenecks and evaluate the 
impact of process changes, while Monte Carlo simulations 
manage uncertainty by modeling variability in sample 
arrival rates or test demand.34,35 

Queuing theory complements these methods by analyzing 
sample flow and optimizing service capacity, particularly 
in high-priority settings like STAT labs, where rapid 
processing is critical.36,37 Although these approaches offer 
a risk-free environment for testing scenarios, they require 
significant time for model development and depend on 
high-quality data inputs, limiting their feasibility in certain 
settings.

These approaches, though effective, often require special-
ized expertise and tools, which can hinder their implemen-
tation in laboratories lacking dedicated OR personnel.

Collectively, these methodologies form a robust toolkit 
for addressing the multifaceted challenges in clinical 
laboratory management. While each method has its unique 
strengths and limitations, their strategic application—alone 
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or in combination—can significantly enhance efficiency, 
reduce costs, and support data-driven decision-making. 
By tailoring these tools to specific laboratory needs and 
investing in the necessary expertise, laboratories can 
overcome operational hurdles and deliver reliable, high-
quality diagnostic services.

Use of computer assisted simulations
Computer-assisted simulations have emerged as a 
transformative tool for analyzing complex systems, 
enabling the study of dynamic processes without real-
world disruptions. The roots of simulation as a method 
can be traced back to the 1940s, when the Monte Carlo 
method was developed during the Manhattan Project 
to model neutron diffusion in nuclear reactions.38,39 In 
the decades that followed, advancements in computing 
technology significantly enhanced simulation capabilities, 
leading to the development of discrete-event simulation 
(DES) in the 1950s and 60s, which became a cornerstone 
for studying queuing systems and logistics. Early adopters 
in industries like manufacturing and defense found these 
methods invaluable for optimizing resource allocation and 
process efficiency.34

The rise in popularity of computer-assisted simulations 
has been driven by improvements in computational power, 
accessibility of software, and the growing complexity 
of systems requiring analysis. Modern simulation tools, 
including those for system dynamics, agent-based modeling, 
and hybrid approaches, are now widely used in healthcare, 
logistics, and engineering. Open-source programming 
languages like R and Python have democratized access to 
simulation tools, enabling researchers and practitioners to 
model real-world problems without the need for expensive 
proprietary software.40,41 In clinical laboratory manage-
ment, simulations have become essential for addressing 
challenges such as high testing volumes, resource 
constraints, and demand fluctuations, further cementing 
their role as an indispensable decision-making tool.42,43

Theory behind computer assisted simulations: a brief 
conceptual description
Computer-assisted simulations in operations research (OR) 
are grounded in mathematical modeling and probability 
theory. At their core, simulations replicate the behavior 
of complex systems by iteratively calculating outcomes 
based on predefined mathematical rules and probabilistic 
distributions.44 DES, one of the most widely used 
methodologies, models systems as a sequence of events 
that occur at discrete points in time. These events are 
governed by probabilistic distributions such as exponential 
or Poisson, which describe stochastic processes like inter-
arrival times or service durations. Monte Carlo simulations, 
another key technique, use random sampling to solve 
deterministic or probabilistic problems by exploring a 
range of possible outcomes under varying assumptions.38 
Both approaches rely on random number generation and 
iterative computation to model uncertainty and variability, 
which are central to real-world OR problems.

The mathematical foundation of simulations also incorpo-
rates optimization and queuing theory to analyze system 
performance. For example, queuing models are built using 
Markov chains and probability distributions to estimate 

metrics such as average wait times, service utilization, and 
system capacity.45 Optimization models, often integrated 
into simulation frameworks, use linear or nonlinear 
programming to identify optimal resource allocation 
strategies. Simulation algorithms are designed to mimic 
real-world processes iteratively, capturing dynamic inter-
actions among variables while accounting for randomness. 
This capability makes simulations particularly powerful 
for modeling complex, interdependent systems like 
clinical laboratories, where exact analytical solutions 
may not exist due to high variability and uncertainty. 
By combining mathematical rigor with computational 
efficiency, simulations provide actionable insights for OR 
practitioners.45

Popular software used in computer assisted simulations
Operations research employs a variety of software tools 
to address complex decision-making problems across 
different domains. Among the most popular software used 
in OR are optimization and simulation tools. Optimization 
software such as Solver, POM-QM, and Lingo are 
frequently utilized in educational settings to enhance 
students' problem-solving capabilities, as evidenced by 
their effective use in a public university in Lima, Peru, 
where they significantly improved student performance in 
OR courses.46 

Additionally, Maple is highlighted for its optimization 
features, which are particularly beneficial in educational 
contexts for formulating, solving, and visualizing optimi-
zation models.47 

Simulation software also plays a crucial role in OR, 
with tools like VISSIM, TSIS/CORSIM, and SYNHRO/
SIMTRAFFIC being extensively used for traffic operations, 
each offering unique capabilities for modeling various 
traffic conditions and providing measures of effectiveness.48 
The widespread use of simulation modeling in fields 
such as manufacturing, health, and military applications 
has led to a proliferation of simulation software tools, as 
noted in a survey by the Operational Research Society of 
Great Britain.49 

Furthermore, the development of micro-computer 
simulation languages has made powerful and inexpensive 
simulation tools accessible, enhancing the capabilities of OR 
analysts.50 The integration of advanced software tools in OR 
and analytics, such as machine learning in R and algebraic 
modeling with JuMP, is increasingly important for handling 
large data sets and complex models, as demonstrated in 
a course designed to equip students with these skills.51

Overall, the diverse range of software tools available in OR, 
from optimization to simulation, underscores their critical 
role in facilitating effective decision-making and problem-
solving across various industries and educational settings.

Challenges in operations research
Current challenges in applying operations research 
(OR) to clinical laboratory management stem from both 
technical and organizational factors. One major issue is the 
complexity of laboratory workflows, which involve multiple 
interconnected processes such as sample collection, 
processing, quality control, and reporting. Modeling 
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these workflows requires advanced analytical methods like 
simulation modeling or optimization techniques, which 
are often beyond the expertise of laboratory personnel.52 
Additionally, clinical laboratories face resource constraints, 
such as limited access to specialized software and 
computational tools, further complicating the integration 
of OR into routine decision-making. High variability in 
demand, driven by external factors like pandemics, adds 
another layer of complexity, requiring dynamic models that 
are challenging to design and implement effectively.53

Another significant challenge is the widespread lack 
of quantitative and analytical skills among laboratory 
managers and staff. Many professionals in clinical laboratory 
management are not trained in the rigorous methodologies 
required for consistent and reproducible OR studies.54 
As a result, even when data are available, there is a risk 
of oversimplified or inconsistent approaches that fail to 
capture the nuances of real-world laboratory operations. 
Moreover, inadequate training in statistical programming 
languages (e.g., R or Python) and software for simulation 
and optimization limits the ability to adopt a reproducible 
framework. This gap in skills leads to missed opportunities 
for leveraging OR techniques to improve efficiency, 
reduce costs, and enhance patient care. Bridging this gap 
requires targeted training programs, cross-disciplinary 
collaboration, and investment in user-friendly OR tools 
tailored to the clinical laboratory setting.55

Despite challenges, operations research and analysis 
can be done using accessible open-source software 
like R and implemented in RStudio.
Operations research (OR) and analysis can be effectively 
conducted using accessible open-source tools like R in 
RStudio, provided users follow key simple practices. 

R is a powerful statistical programming environment that 
offers extensive libraries for simulation, optimization, and 
statistical modeling, making it highly suitable for a wide 
range of operations research (OR) applications, including 
resource allocation and workflow optimization. The 
language is renowned for its flexibility and extensibility, 
allowing users to perform a variety of statistical analyses 
such as regression, ANOVA, time series, and multivariate 
analysis, which are crucial for OR tasks.56 R's open-source 
nature and the availability of over 4000 specialized 
packages further enhance its capabilities, providing users 
with tools for data manipulation, calculation, and graphical 
display. The language's ability to handle complex data 
structures and perform advanced statistical modeling is 
particularly beneficial in OR, where data-driven decision-
making is essential.56 Moreover, R's algebraic modeling 
approach, as discussed in optimization contexts, allows for 
clear formulation and implementation of linear and mixed-
integer optimization problems, which are common in OR. 
The integration of R with data analytics platforms reduces 
the barrier to entry for professionals, enabling them to 
leverage data analytics tools effectively.57 

Furthermore, R's open-source nature and vast commu-
nity support reduce barriers to entry, allowing clinical 
laboratory managers to adopt OR techniques without 
expensive software. By combining these practices with 
RStudio's user-friendly interface, even individuals with 

basic programming skills can harness the power of OR to 
make data-driven decisions in laboratory management.

Computer-assisted simulations in R using RStudio 
are highly effective and versatile due to the power 
of the R programming language and the integrated 
development environment (IDE) provided by RStudio. 
Computer-assisted simulations in R using RStudio are 
highly effective and versatile due to the robust capabilities 
of the R programming language and the integrated 
development environment provided by RStudio. R is a 
preferred choice for simulation studies across various fields 
due to its extensive library of packages and the ability to 
write custom functions, which is particularly beneficial 
in areas like computer adaptive testing (CAT) and item 
response theory (IRT) simulations.58 

The RStudio IDE enhances this experience by offering a 
user-friendly interface that facilitates project management, 
script writing, and access to comprehensive documentation, 
making it an ideal environment for empirical research 
and educational purposes.59 

In educational settings, R is utilized to teach complex 
statistical concepts through simulations, such as sampling 
distributions and hypothesis testing, which help students 
grasp abstract ideas more concretely.60 Additionally, R's 
capabilities extend to large-scale simulation studies, where 
packages like simsalapar enable efficient parallel computing 
and comprehensive result analysis, crucial for handling 
complex quantitative risk management problems.61 

The RxODE package further exemplifies R's versatility by 
allowing the simulation of differential equation models, 
which can be integrated into interactive applications for 
real-time scenario evaluation.62 

By combining R's statistical prowess with RStudio's 
integrated environment, users can create flexible, 
reproducible, and cost-effective simulations to address 
complex operations research questions in various fields, 
including clinical laboratory management. This powerful 
combination democratizes advanced analytics, making it 
accessible to a wide range of users and applications.

Simulations can be performed using base R functions 
to answer simple OR questions using loops.
Even if access to custom packages specifically designed for 
operations research questions are not available, simulations 
for simple operations research (OR) questions can be 
effectively performed using base R functions, leveraging 
its built-in capabilities such as loops (for, while repeat) and 
vectorized operations. 

This approach provides a flexible and straightforward 
framework for tackling basic OR problems without 
requiring specialized packages. Base R excels in simulation 
tasks through its powerful constructs: vectorized operations 
enable efficient computations over large datasets, while 
control structures like loops and conditional statements 
(if, else) support iterative and dynamic process modeling. 

Additionally, R's random number generation functions 
(runif, rnorm, rpois, and sample) facilitate stochastic 
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modeling, making it ideal for tasks such as modeling 
queue behavior, conducting Monte Carlo simulations, or 
analyzing inventory dynamics. These features collectively 
ensure that base R is well-suited for addressing a range of 
simple OR challenges.

Step-by-step instructions for installing R and RStudio
To perform simulations using R, you need to download and 
install the software on a PC or Mac with an active internet 
connection. The following text is a step-by-step guide to 
installing and setting up R and R studio.

Step 1: Download R
1. Visit the CRAN (Comprehensive R Archive Network).
2. Choose your operating system:

•	Windows: Click on “Download R for Windows,” 
then select “base” and download the installer.

•	macOS: Click on “Download R for macOS” and 
choose the appropriate file for your macOS version.

•	Linux: Follow the detailed instructions for your 
distribution (Ubuntu, Fedora, etc.).

3. Run the installer:
•	Follow the prompts, accept the defaults, and 

complete the installation.

Step 2: Download RStudio
1. Visit the RStudio Download Page.
2. Select the free version (RStudio Desktop – Open Source 

License) and download the installer for your operating 
system.

3. Run the installer:
•	Follow the instructions and complete the installation.

Step 3: Verify installation
1. Open RStudio.
2. Verify that R is linked to RStudio by typing the follow-

ing command in the console:

===============================
Version
===============================

The output should display the installed R version and 
platform information.

Good practices when running R in RStudio

1. Organize your workspace
A well-organized workspace is critical for efficient coding 
in RStudio. Begin by setting a working directory to define 
the location where your files will be saved and accessed. 
This can be done using the setwd() function or by navigating 
to Session > Set Working Directory in RStudio’s menu. For 
example:

===============================
setwd("C:/Your/Directory/Path")
===============================

Note: replace "C:/Your/Directory/Path" with the specific path 
on your computer for your project.

Additionally, keep projects separate by using RStudio’s 
Projects feature, which allows you to create isolated 

environments for different analyses. This helps maintain 
a clean and focused workflow, especially when managing 
multiple tasks simultaneously.

2. Comment your code
Commenting your code is essential for clarity and 
collaboration. Use comments to explain the purpose of 
each section, making your script easier to understand for 
yourself and others in the future. For instance:

===============================
# Generate 100 random numbers from a normal 
distribution
random_numbers <- rnorm(100, mean = 0, sd = 1)
===============================

Comments have the symbol “#” at the start. This practice 
ensures that your logic and intent remain clear and human 
readable, even when revisiting code after a long period or 
sharing it with team members.

3. Use version control
Integrating version control, such as Git, within RStudio 
is invaluable for tracking changes in your code. Version 
control allows you to maintain a history of edits, collaborate 
with others, and revert to previous versions when needed. 
RStudio’s Git integration makes it easy to commit changes, 
push updates, and manage branches, ensuring a robust 
development workflow.

4. Save your work
Always save your scripts regularly to avoid losing progress. 
Use .R files to organize your code and the Source Pane 
in RStudio to write, save, and run scripts systematically. 
Working from the Source Pane instead of directly in the 
console provides better control and allows you to rerun 
sections of your code easily.

5. Utilize packages wisely
Efficient package management is crucial for a streamlined 
workflow. Install only the packages you need using:

===============================
install.packages("ggplot2")
===============================

At the beginning of your script, load these packages 
explicitly with library() to ensure they are available for use:

===============================
library(ggplot2)
===============================

This practice keeps your environment organized and 
avoids potential conflicts or redundancies. Note that 
functions overwrite previously loaded ones if they have the 
same name.

6. Keep R and RStudio updated
Regular updates to R, RStudio, and installed packages 
ensure compatibility, improved functionality, and enhanced 
security. 
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The version of R used in the preparation of this manuscript 
is R version 4.4.1 (2024-06-14 ucrt) -- "Race for Your 
Life" Copyright © 2024 The R Foundation for Statistical 
Computing. Platform: x86_64-w64-mingw32/x64.63 The 
version of RStudio used in this paper is RStudio 2024.09.0 
Build 375 "Cranberry Hibiscus" Release (c8fc7aee, 2024-
09-16) for Windows.64 To update all packages at once, use:

===============================
update.packages()
===============================

Keeping your software up-to-date prevents bugs and 
ensures access to the latest features and improvements. 
This can also be done by pointing and clicking.

7. Write reproducible code
Reproducibility is a hallmark of good programming. For 
simulations results to be reproducible, a random seed 
must be set:

===============================
set.seed(123)
===============================

Additionally, avoid hard-coding file paths by using relative 
paths, which make your code portable across different 
systems and environments. A relative path assumes that the 
starting point of the path is the current working directory 
and will look for the file of interest beginning in the current 
working directory.

8. Debug effectively
Debugging is an essential part of coding. Use diagnostic 
functions like summary(), str(), and print() to inspect variables 
and identify issues. Break your code into smaller sections 
and test each one before running the entire script. This 
incremental approach helps isolate errors quickly and 
ensures smooth execution.

9. Utilize RStudio features
RStudio offers several features to enhance productivity:
•	 Code	 completion: Autocomplete saves time and 

reduces typos.
•	 Plots	pane: View visualizations directly within RStudio 

without cluttering your workspace.
•	 Environment	 pane: Monitor active variables, their 

data types, and values to keep track of your workspace.

10.	Save	outputs
Exporting results, such as plots or data, is straightforward 
in RStudio. For example, save a plot as a PNG file using:

===============================
png("plot.png")
plot(rnorm(100))
dev.off()
===============================

This ensures your outputs are preserved and accessible for 
reporting or further analysis.

Maintain an efficient workflow
To optimize your workflow, use shortcuts like Ctrl + Enter 
(Windows/Linux) or Cmd + Enter (macOS) to quickly 
run lines of code. Regularly clear your environment 
using: rm(list = ls()) to avoid memory issues caused by 
unnecessary variables. Finally, back up your scripts and 
results in version-controlled or cloud-based environments 
for security and easy retrieval. 

By following these practices, you can create a structured, 
efficient, and reproducible environment for coding in 
RStudio, enhancing your productivity and ensuring the 
quality of your work.

Key steps in performing a computer-assisted 
simulation study using base R to answer common 
operations research (OR) questions:
Once you have installed and set up R and Rstudio, you 
should be ready to perform simulation experiments and 
analyses to support operations research. The following 
paragraphs outline a step-by-step guide to perform 
simulations in R.

Step 1: Clarify the research or study question

Define the problem
Clearly state the objective of the study. Common problems 
that arise in the setting of laboratory management include 
optimizing laboratory workflow, minimizing reagent 
stockouts, or determining optimal staffing levels.

Example: “What are the chances of a reagent stockout given 
fluctuating demand and a fixed supply?”

Specify the outcome
Identify the metric or outcome you wish to measure. 
Common outcomes of interest for a clinical laboratory 
include waiting time, cost, or stockout probability.

Step 2: Define variables and assumptions

List input variables
Identify the key inputs of interest relevant to the operations 
problem, for example, inter-arrival times, service rates, and 
demand distribution. This part requires prior information 
about the specific experience of the clinical laboratory. 
The researcher or manager must make sure that the 
assumed parameters closely approximate the distributional 
characteristics of the phenomena under consideration.

Example: Daily reagent demand follows a normal probability 
distribution with a mean of 500 units and standard deviation 
of 50.

Specify constraints and assumptions
Document any constraints or fixed parameters (e.g., 
available supply, service capacity). These are factors that 
usually have the most impact on the decision-making 
process and pertain to limits on resources.

Example: Daily reagent supply is fixed at 600 units.
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Step 3: Set up the model

Choose a simulation approach
Decide on the type of simulation (e.g., discrete-event 
simulation, Monte Carlo simulation).
Example: Monte Carlo simulation to estimate the probability 
of stockouts.

Define logical flow
Create a logical sequence of events (e.g., sample arrival → 
service start → service completion).

Plan iterations
Decide on the number of iterations to ensure statistical 
reliability.

Step 4: Draft the code in base R

Initialize parameters
Define all fixed parameters (e.g., supply level, number of 
iterations).

===============================
set.seed(123) # Ensure reproducibility of results
simulations <- 1000
supply <- 600
mean_demand <- 500
sd_demand <- 50
===============================

Generate random data
Use base R functions to model stochastic inputs. This step is 
the key step in simulation studies as choice of the stochastic 
(probabilistic) model has direct effect on the results. The 
stochastic (probabilistic) model should closely mimic the 
natural evolution of the phenomenon under consideration 
as much as practically necessary.

===============================
demand <- rnorm(simulations, mean = mean_demand, 
sd = sd_demand)
===============================

Simulate the process
Use loops and conditional logic to simulate the system. 
The loop section instructs the computer to perform 
the simulations many times to adequately model the 
uncertainty of the phenomena.

===============================
stockouts <- 0

for (i in 1:simulations) {
 if (demand[i] > supply) {
  stockouts <- stockouts + 1
 }
}
===============================

Calculate the outcome
Compute the desired metric or outcome.

===============================
probability_stockout <- stockouts / simulations
===============================

Step 5: Run and debug the code

Run incrementally
Run the code block by block to identify potential errors. 
This method allows the researcher to fine check the code 
for errors.

Validate logical flow
Print intermediate results (e.g., head(demand)) to ensure 
inputs and outputs are logical.

Step 6: Interpret results

Analyze the outputs
Examine the computed outcomes in relation to the 
research question.

===============================
print(probability_stockout) # Probability of stockout
===============================

Provide insights
Example Interpretation: “The simulation estimates a 4.4% 
probability of stockout. Based on the current operational situation of 
the clinical laboratory, this result indicates a potentially preventable 
loss of productivity and is an opportunity to institute pre-emptive 
action by increasing the supply or buffer stock.”

Step 7: Ensure reproducibility

Set a random seed
Use set.seed() to ensure consistent results in repeated runs. 
The computer only generates pseudorandom numbers. 
Setting the seed at the beginning of the code allows others 
to faithfully reproduce the results even if the code involves 
several iterations of generating “random” runs or samples 
from a probability distribution or stochastic model. Any 
number can be used, but it must be declared to allow 
reproducibility.

Example: set.seed(123) #setting the seed to 123 is a 
simple default strategy, but it can be any number.

Document code
Comment code extensively to explain each step. This 
allows others to understand the flow and purpose of the 
code. All characters in a line of code after the pound “#” 
sign is interpreted by R as a comment. Every next line is 
considered a new instruction by R.

Example:

===============================
# Generate daily demand using normal distribution
demand <- rnorm(simulations, mean = mean_demand, 
sd = sd_demand)
===============================
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Export results
Save results for future reference.

===============================
write.csv(data.frame(demand, supply), "simulation_results.
csv", row.names = FALSE)
===============================

Step 8: Validate and refine

Test for robustness
Run the simulation with different parameters (e.g., supply 
levels) to test sensitivity.

Compare results
Validate outputs against known benchmarks or expert 
estimates.

Step 9: Report findings

Summarize key results
Present the simulation results in clear, concise terms.
Example: “The Monte Carlo simulation revealed a stockout 
probability of 4.4%, suggesting a moderate risk under current 
supply conditions.”

Visualize results
Although there are many excellent packages in R for 
visualization, the base R plotting functions for visualization 
are already powerful for basic applications. The following 
is code that generates a histogram of daily demand:

===============================
hist(demand, main = "Distribution of Daily Demand", xlab 
= "Daily Demand")
===============================

Recommend actions
Translate findings into actionable recommendations. This 
is one of the most important parts of the analysis as it 
clearly communicates the findings to decision makers.

This step-by-step process ensures clarity, reproducibility, 
and actionable outcomes for any OR simulation study 
conducted in base R.

Illustrative case examples using Base R to demonstrate 
the analysis of simple OR questions

In the following paragraphs, using typical case scenarios, 
we will walk you through the process of using R to perform 
operations research and analysis.

A. Patient or sample queue simulation

Vignette
A typical small government clinical laboratory receives 
a steady stream of patient samples for processing. Due 
to the limited resources that the laboratory is given, it is 
unsurprising that there are days when samples pile up and 
wait to be processed. You, as the laboratory manager wants 
to estimate the waiting times to identify bottlenecks in the 
workflow. You intend to use this information to justify 
increase in budget allocation for the laboratory.

Strategy
Simulate the waiting times of patients (i.e. samples) in your 
laboratory where there is only one receiving and processing 
staff. Assume that the service time follows an exponential 
distribution with rate = 1.5. Run the simulation for 10 
samples.

Solution using base R

===============================
set.seed(123)
arrival_times <- cumsum(rexp(10, rate = 1)) # Inter-
arrival times
service_times <- rexp(10, rate = 1.5) # Service times

waiting_times <- numeric(length(arrival_times))
end_service <- 0 # End time of the previous service

for (i in seq_along(arrival_times)) {
 start_service <- max(arrival_times[i], end_service)
 end_service <- start_service + service_times[i]
 waiting_times[i] <- start_service - arrival_times[i]
}
waiting_times
===============================

Expected output (waiting time in hours)
[1] 0.00000000 0.09327643 0.00000000 0.15576506 
0.35096597
[6] 0.15998745 0.41228424 1.30915313 0.00000000 
0.36480311
===============================

Interpretation
In a simulation of arrival times and processing times of 
the next 10 patients/samples, three (3) patients/samples 
experience no wait time (0 hours), while the rest of the 
patients/samples experience waiting times ranging from 6 
minutes to 79 minutes.

Explanation and notes
This R code simulates a queuing system where patients/
samples arrive and get processed, calculating the waiting 
time for each patient/sample based on their arrival and 
service times. The random seed is set using `set.seed(123)` 
to ensure reproducibility, so the generated random 
numbers remain consistent across runs. 

The arrival times of 10 patients (or samples) are simulated 
using `cumsum(rexp(10, rate = 1))`, where `rexp(10, 
rate = 1)` generates random inter-arrival times from an 
exponential distribution with lambda of 1 (1 patient arrives 
per hour on average), and `cumsum` calculates their 
cumulative sum to determine actual arrival times. 

Similarly, service (or processing) times are simulated using 
`rexp(10, rate = 1.5)`, which generates random service 
durations from an exponential distribution with a rate of 
1.5 (1.5 patient samples are processed per hour on average).

A numeric vector, `waiting_times`, is initialized to store 
the waiting times for each patient (or sample), starting with 
zeros. The variable `end_service` is set to 0 to track when 
the previous patient’s (or sample’s) processing time ends. 

https://philippinejournalofpathology.org | Vol. 9 No. 2 December 2024

Ang and Sotalbo, Operations Research and Analysis in the Context of Clinical Laboratory Management Philippine Journal of Pathology | 46



The `for` loop iterates over each customer, calculating 
their waiting time. 

For each patient (or sample), the processing time starts 
either at their arrival time or when the previous customer's 
service ends, whichever is later. 

This is computed using `start_service <- max(arrival_
times[i], end_service)`. The service end time is updated 
as the sum of the processing start time and the current 
patient’s (or sample’s) processing time. The waiting time 
for each patient (or sample) is calculated as the difference 
between their processing start time and arrival time and is 
stored in the `waiting_times` vector.

At the end of the simulation, the `waiting_times` vector 
contains the waiting times for all 10 patients. This code 
models a first-come, first-served queuing system using an 
exponential distribution for arrival and processing times, a 
common approach in queuing theory to represent random 
events such as patient arrivals and processing durations.

B. Monte Carlo simulation

Vignette
A laboratory faces uncertainty in reagent consumption due 
to fluctuating daily test demands for a cartridge-based PCR 
assay for an infectious disease. The lab manager uses Monte 
Carlo simulation to estimate the probability of running out of 
reagents (stockouts) when supply is fixed at 600 units per day. 

Strategy
Estimate the probability of a reagent stockout. Assume that 
based on the lab’s previous 3 months census, the demand 
follows a normal probability distribution with mean demand 
of 500 and an SD of 50. Assume that there is no strong 
reason to believe that the probability distribution of the 
demand for the next several months shall be significantly 
different from the previous 3 months.

Solution using base R

===============================
set.seed(123)
simulations <- 1000
demand <- rnorm(simulations, mean = 500, sd = 50) # 
Daily demand
supply <- 600 # Fixed supply

stockouts <- 0

for (i in 1:simulations) {
 if (demand[i] > supply) {
  stockouts <- stockouts + 1
 }
}

probability_stockout <- stockouts / simulations
probability_stockout
===============================

Expected output
[1] 0.028
===============================

Interpretation
The probability of experiencing a stockout is approxi-
mately 2.8%. Depending on the laboratory’s operational 
strategy, this information may represent an unacceptable 
level of risk (potential income loss), and thus presents 
as an opportunity to adjust buffer stock levels to reduce 
the operational risk brought about by insufficient stocks. 
Provided that the assumptions are reasonably accurate, 
this information helps the lab manager decide whether 
to increase the buffer stock levels or not and how much 
to increase.

Explanation and notes
This R code simulates a scenario to estimate the probability 
of a stockout, which occurs when customer demand exceeds 
available supply. The simulation runs 1,000 iterations to 
approximate this probability under given demand and 
supply conditions.

The random seed is set using set.seed(123) to ensure 
that the generated random numbers are consistent and 
reproducible. The daily demand is modeled as a normal 
distribution using rnorm(simulations, mean = 500, sd = 50), 
which generates 1,000 random values with a mean of 
500 and a standard deviation of 50. This represents the 
variability in daily demand. The supply is fixed at 600 
units, indicating the maximum quantity available each day.

A variable stockout is initialized at 0 to count the number 
of times demand exceeds supply during the simulations. A 
for loop iterates through each simulated day, comparing 
the daily demand (demand[i]) to the fixed supply. If 
the demand on a particular day exceeds the supply, the 
stockouts counter is incremented by 1.

After completing the loop, the probability of a stockout is 
calculated as the ratio of the number of stockouts to the total 
number of simulations (probability_stockout <- stockouts / 
simulations). This probability provides an estimate of how 
often demand will surpass supply, helping to assess the risk 
of insufficient inventory under the given conditions. 

Finally, the value of probability_stockout is returned, 
representing the likelihood of experiencing a stockout 
based on the simulated data.

C. Inventory Management

Vignette
A clinical laboratory needs to optimize its reagent order 
quantity for a particular type of PCR cartridges to minimize 
total costs, which include ordering costs and holding costs. 
Using a simple inventory model, the lab manager was 
tasked to determine the optimal order size.

Strategy
Simulate and find the optimum order quantity size using 
a simple inventory model. Assume that the order cost is 50 
(in thousands of pesos) per order, the annual holding cost 
per unit is 2 (in thousands of pesos), and that the annual 
demand is 1000 units. Perform a simulation for different 
order sizes (from 10 per order to 1000 units per order).
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Solution using base R:

===============================
set.seed(123)

order_cost <- 50
holding_cost <- 2
annual_demand <- 1000

total_cost_for_order_size <- function(order_size) {
 total_cost <- (annual_demand / order_size) * order_cost 

+ (order_size / 2) * holding_cost
 return(total_cost)
}

order_sizes <- seq(10, 1000, by = 10)
total_costs <- numeric(length(order_sizes))

for (i in seq_along(order_sizes)) {
 total_costs[i] <- total_cost_for_order_size(order_sizes[i])
}

order_sizes[which.min(total_costs)]

===============================
Expected output (optimum order size to minimize total 
costs)
[1] 220
===============================

Interpretation
The optimal order size for reagents is 220 units per order, 
minimizing total costs while ensuring sufficient supply. 

Explanation and notes
This R code determines the optimal order size that 
minimizes the total cost of managing inventory. The optimal 
order size is calculated by evaluating the trade-off between 
ordering costs and holding costs for different order sizes.

The code begins by setting a random seed using set.
seed(123) for reproducibility. 

The fixed parameters include the order cost (order_cost = 
50) in thousands of pesos per order, which represents the 
cost of placing a single order; the holding cost (holding_
cost = 2) in thousands of pesos, which represents the 
cost of holding one unit of inventory annually; and the 
annual demand (annual_demand = 1000) in units of PCR 
cartridges, the total number of units required per year.

The function total_cost_for_order_size calculates the 
total inventory management cost for a given order size. It 
computes the total cost as the sum of:
1. The ordering cost: (annual_demand / order_size) * 

order_cost, which depends on how many orders need 
to be placed annually.

2. The holding cost: (order_size / 2) * holding_cost, which 
represents the cost of holding the average inventory 
level (assumed to be half the order size).

Next, a sequence of potential order sizes is generated using 
seq(10, 1000, by = 10), representing possible quantities 
from 10 to 1000 units in increments of 10. 

An empty vector, total_costs, is initialized to store the total 
cost for each order size. A for loop iterates through all 
possible order sizes, calculates the total cost for each using 
the optimal_order_quantity function, and stores the result 
in total_costs.

Finally, the code identifies the order size with the minimum 
total cost using order_sizes[which.min(total_costs)]. 

This value corresponds to the EOQ, which is the order size 
that minimizes the combined ordering and holding costs. 
The result provides a practical decision point for optimizing 
inventory management.

DISCUSSION

Benefits of using base R for simulations

Accessibility
Base R is inherently accessible, as it is included in every R 
installation. Users do not need to install or learn additional 
packages, making it ideal for those new to R or working 
in environments with limited internet access or system 
permissions. This simplicity reduces the setup time and 
ensures that simulations can be executed without technical 
barriers, streamlining the learning and implementation 
process for operations research (OR) applications.

Flexibility
Base R’s built-in functions and loop structures provide 
immense flexibility, allowing users to create tailored 
solutions for specific OR problems. Unlike pre-built 
packages, which often require users to adapt their 
problems to fit the package’s framework, base R enables 
the customization of code to address unique scenarios. 
For example, using for loops and conditional statements, 
users can model workflows, simulate inventory dynamics, 
or perform Monte Carlo experiments with parameters 
that closely match their operational realities.

Transparency
One of the major strengths of using base R is the explicit 
and transparent nature of the code. Each step of the 
simulation process is visible and traceable, making it easier 
to understand the logic behind the calculations. This 
transparency is particularly valuable in educational settings, 
where understanding the underlying processes is just as 
important as obtaining results. For instance, educators can 
use base R to demonstrate the mechanics of queuing theory 
or inventory modeling, breaking down complex concepts 
into manageable steps.

Performance for simple tasks
Base R performs well for small-scale problems, where 
the computational demands are moderate. For tasks like 
simulating sample arrival times, calculating resource 
utilization, or testing simple queuing models, base R 
executes efficiently without the overhead of loading and 
running additional libraries. This makes it a practical 
choice for quick, straightforward simulations that do not 
require high levels of complexity or scalability.
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Limitations and contextual suitability

Scalability challenges
While base R is sufficient for simple OR simulations, its 
performance can decline when handling large datasets or 
complex models. Loops in base R, such as for or while, are 
not optimized for high scalability and may result in slower 
execution compared to vectorized operations or specialized 
simulation libraries. For example, simulating thousands of 
events in a discrete-event simulation might require signi-
ficant computational time, making package-based solutions 
like simmer or parallelized approaches more suitable.

Readability concerns
As simulations grow in complexity, the verbosity of base R 
code can make scripts harder to read and maintain. Unlike 
specialized libraries that encapsulate intricate operations 
into single functions, base R requires users to write out 
each step explicitly. This verbosity can lead to longer scripts 
that are challenging to debug and interpret, especially 
for collaborative projects or long-term use.

Lack of specialized features
Base R lacks the advanced functionalities provided by 
dedicated simulation packages. Features such as parallel 
processing, pre-built queuing models, and tools for 
stochastic optimization are not available natively. For 
instance, simulating real-time laboratory workflows or 
performing agent-based modeling may require external 
packages like simmer or SimPy for efficiency and scalability. 
This limitation makes base R less suitable for highly 
dynamic or large-scale OR problems.

Balancing benefits and limitations

Simplicity vs. complexity
For basic OR simulations, the simplicity and accessibility 
of base R often outweigh its limitations. Tasks such as 
modeling a single-server queuing system or simulating 
demand fluctuations can be efficiently accomplished 
using base R’s straightforward constructs. However, as 
the complexity of the problem increases, the advantages 
of using specialized packages become more apparent. For 
instance, a laboratory workflow involving multiple servers, 
priority queues, and stochastic elements would be better 
addressed with dedicated simulation tools.

Context-driven suitability
The suitability of base R for OR simulations depends heavily 
on the context. In resource-limited environments or for 
educational purposes, the transparency and accessibility of 
base R make it an excellent choice. Conversely, in high-
volume industrial settings or research scenarios requiring 
advanced modeling, the lack of scalability and specialized 
features may hinder its applicability. In such cases, 
integrating base R with additional libraries or external 
software might provide a balanced solution.

Success and utility of simulation depend on accuracy 
of assumptions
The success and utility of computer-assisted simulations 
in operations research processes are heavily dependent 
on accurately modeling the stochastic nature of the 

phenomena under consideration. Accurate modeling of 
stochastic processes is essential, as errors in these models 
can lead to significant consequences, including economic 
losses and safety risks.65 Techniques such as observation-
enhanced verification and probabilistic model checking 
have been developed to improve the accuracy of models by 
incorporating real-world data, thereby refining continuous-
time and discrete-time Markov models to better capture 
process behaviors.65

CONCLUSION

In this paper we demonstrated a simple step by step 
workflow to analyze operations research type of questions 
arising from clinical laboratory management scenarios.

We showed that even just Base R provides a powerful, 
accessible, and flexible platform for performing simple 
operations research (OR) simulations, offering a straight-
forward framework for modeling diverse scenarios such 
as queue simulations, inventory management, and basic 
workflow optimization. Its transparency and ease of use 
make it particularly well-suited for small-scale problems, 
educational purposes, or situations where simplicity 
and minimal setup are priorities. For beginners or users 
in resource-constrained environments, base R serves 
as an effective tool to explore OR concepts and conduct 
meaningful analyses without relying on additional libraries. 

However, its limitations in scalability, readability, and 
advanced features necessitate careful evaluation of the 
task's complexity. While base R excels in leveraging R’s 
core statistical and mathematical modeling strengths, users 
must recognize when transitioning to specialized tools is 
required for addressing more complex OR challenges. 
Understanding its unique strengths and constraints allows 
users to harness base R effectively while building a solid 
foundation for advancing to more robust methodologies.
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